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I.  INTRODUCTION

One of the primary goals of this study is to develop an approximate
but sufficiently accurate analysis for the problem of electromagnetic
(EM) plane wave scattering by an open ended, perfect]y-condutting,
semi-infinite hollow circular waveguide (or duct) with a thin, uniform
layer of lossy or absorbing material on its inner wall, and with a
simple termination inside. While the analysis of the EM scattering by
such a configuration is in general a difficult task, this difficulty can
hopefully be substantially reduced if one proceeds from relatively
simple to more complex duct geometries and develops an understanding of
the basic scattering mechanisms involved in such geometries.

With the above view in mind, the less difficult but useful problem
of the EM scattering by a two-dimensional (2-D), semi-infinite parallel
plate waveguide with an impedance boundary condition on the inner walls
was chosen initially for analysis. The impedance boundary condition in
this probiem serves to model a thin layer of lossy dielectric/ferrite
coating on the otherwise perfectly-conducting interior waveguide walls,
An approximate but efficient and accurate ray solution was obtained
recently for this problem. That solution is presently being extended to
the case of a moderately thick dielectric/ferrite coating on the walls
so as to be valid for situations where the impedance boundary condition

may not remain sufficiently accurate. These solutions will provide the



background for the development of an analogous three-dimensional (3-D)
solution for analyzing the EM scattering by a semi-infinite circular
duct with an absorber (lossy dielectric/ferrite) coating on its inner
wall and with a simple termination inside.

It was mentioned above that as a first step, the simple problem of
the EM scattering by a semi-infinite open ended parallel plate waveguide
was chosen for analysis. This semi-infinite parallel plate Qeometry is
excited by an EM plane wave which is incident from the exterior region
as shown in Figure 1. The reason for initially choosing this simpler
parallel plate problem was to examine the efficiency and utility of an
approximate ray method of analysis while retaining the essential
features of the absorber coated circular duct geometry but without the
added complexity of the latter. The approximate ray method of analysis

was selected here because of its conceptual simplicity.

2
X :

Figure 1. Diffraction by an open ended semi-infinite parallel plate
waveguide with inner impedance walls and perfectly-conducting
outer walls,



While the fields scattered into the exterior region by the edges of
the semi-infinite parallel plate waveguide of Figure 1 as well as the
fields coupled into the interior waveguide region are described here in
terms of rays diffracted by the edges and by the rays which propagates
inside the waveguide, respectively, one can also employ modes to
describe the fields within the interior waveguide region. It is noted,
of course, that at high frequencies where the width of the parallel
plate waveguide becomes large in terms of the wavelength, one
"generally" requires many modes, and likewise many rays, to represent
the fields within the waveguide so that neither the modal nor the ray
approach is expected to remain efficient at high frequencies to describe
the interior waveguide fields. On the other hand, oné might anticipate
that the modal and the ray procedures might become more efficient if the
impedance surface was lossy (i.e. 1if the real part of the surface
impedance was non-zero) as is true for inlets with absorber coating on

the inner walls,

- g

(x',2')

; OBSERVATION
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(x,z)

Figure 2. Infinitely long (intz) parallel plate waveguide excited by
an interior line source.



Clearly, in order to study the utility and relative efficiencies of
the ray and modal approaches for describing the fields within the lossy
walled parallel plate waveguide region, it became necessary to study a
second problem directly related to the first one in Figure 1. The
configuration of the second related problem consists of an inteiror line
source exciting a parallel plate waveguide with an impedance boundary
condition on its inner walls as shown in Figure 2. It is imbortant to
note that the geometry in Figure 2 is infinitely long; whereas, that in
Figure 1 is semi-infinite.

An exact modal solution can be constructed for this source excited
infinite waveguide problem in Figure 2. Basically, an integral
representation for the waveguide Green's function can be developed first
from which a formal modal expansion is readily obtained via Cauchy's
residue theorem applied to the abovementioned integral representation.
Due to the surface impedance boundary condition the modal eigenvalues
cannot be determined analytically and must therefore have to be
determined numerically in this problem from the resonant denominator of
the integrand (pertaining to the integral representation of the
waveguide Green's function). Once the roots of the resonant denominator
are found numerically, the modal (eigenfunction) expansion for the
impedance walled parallel plate waveguide Green's function can also be
computed numerically. Furthermore, an asymptotic approximation of the
integral representation for the waveguide Green's function (after the
resonant denominator is expressed as a geometric series) yields the

approximate ray series solution for the same waveguide Green's function.



The latter ray solution is the one which is of major interest in this
study. Some of the dominant ray paths in the ray solution for this
problem in Figure 2 are shown in Figure 3.

In the ray method, the field from a source point to an observation
point is tracked along ray paths that obey the rules of geometrical
optics. Such an approach can also suffer the limitations of the exact
modal solution in that a large number of rays can contribute.to the

field point if the guide width is large in terms of the wavelength,.

(x',2")

(x,2)

Figure 3. Dominant ray paths for the problem in Figure 2.

However, some of the advantages of the purely ray approach are that it
does afford some physical insight into the scattering mechanisms
particularly in connection with the coupling of the fields from the
exterior to the interior regions in the case of the semi-infinite
waveguide configuration, as well as into the effect of the wall
impedance on the fields in the interior waveguide region. Also, the ray
solution does not require one to evaluate the eigenvalues which are
essential for the construction of the modal solution. This eigenvalue
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evaluation must be done numerically for different impedance values and
for each mode making the modal approach more inefficient as compared to
the ray approach., Furthermore, as will be indicated later in this
report, it was found from the numerical study of the modal and ray
solutions that, in general, the ray solution converged much faster than
the modal solution for the case of interest, namely, when the wall
surface impedance contained loss; furthermore, it was also found in this
work that, in general, the rate of convergence of the modal solution did
not improve significantly even with the presence of loss in the wall
surface impedance. Thus, the ray solution is being pursued with a view
toward gaining an insight into the utility and accuracy of such a field
representation.

The format of the present report is as follows. In section II, the
exact modal and the approximate ray solution for the fields inside an
infinitely long parallel plate waveguide with impedance walls is
analyzed for the case of electric (or magnetic) line source excitation.
Numerical results based on these two representations are also indicated
together with a comparison of these modal and ray solutions. An
analysis of the EM scattering and coulping problems by open ended
semi-infinite paraliel plate waveguide are presented in section III

together with some numerical results.



I1. ANALYSIS OF A PARALLEL PLATE WAVEGUIDE WITH LOSSY WALLS

The problem of a line source excited 2-D parallel plate waveguide
with impedance walls 1is analyzed in this section. An exp(+jwt) time
dependence is assumed and suppressed in this analytical development.
The 2-D time harmonic wave equation for the parallel plate Green's
function G due to a line source at x = x' and z = z' in the waveguide

geometry of Figure 2 is given by

32 32 2
w2 Y a2 tk G = -8(x-x") &(z-z")

—-— -—

, (1)

where k is the free-space wavenumber, In this 2-D problem, the EM
fields can be simply related to the Green's function G because one can
scalarize the solution into the TEy and TMy cases. One notes that the
magnetic field has only a ; component for the TEy case and likewise, the
electric field has only a ; component for the TMy case. Thus, let A=
§Hy represent the magnetic field in the TEy case; likewise let E = ; Ey
represent the electric field in the TMy case. The excitation in the TEy
case can be a magnetic line source of a strength M at (x',z'); likewise,
an electric line source of strength I at (x',z') generates the TMy
fields. These line sources are of infinite extent in the t; direction.
It can be shown that Hy = -jkYMG and Ey = =jkZIG where Z (or Y) is the
free-space impedance (or admittance), provided G satisfies the following

boundary conditions:



3_X'jk60G=0 at x =0
(2)
36
X * jks;G =0 at x = a s
where

Ly,3 for TEy case

%0,a
Yo,a for TMy case

and Z, 4 (or Yo,a) is the surface impedance (or admittance) at x = 0 and
X = a which is normalized to the free-space wave impedance (or
admittance). (See Figure 2.,) Using separation of variables, the
Green's function G(x,x';z,z') is represented in terms of the one

dimensional Green's functions 6y(x,x') and G,(z,z') as [1,2]

1
G(x,x"';2,2') = = 5;3 J GX-szAZ

Y4

, (3)

where the integration contour C, in the above equation encloses only the
singularities of G;. Solving (1) for G, subject to the boundary

conditions in (2), Gy(x,x') is found to be:

iV A x W i A, x iV Ay X
(eJ xX< Roe JY Ax <)(e JY AxX> + RaeJ X >)
G(xx') = T, (1R R,) .



where X, and X¢ denote the values of x which satisfy x < x' and x > x',

respectively and
Xy + kg

Ry = -
0 /i; ks,

Ra = /% -ks. © .
X a
In addition

A + A7 = k2

Now Gy(z,z') which satisfies the radiation condition for |z]| » = is
likewise given by:

-jﬁ.z‘Z-Z ' I
e

6,(2:2") = T , (5)

Therefore, G(x,x';z,z') becomes via (3),(4) and (5), the following:

iV Ay X =3V Ay X -3V A X 3V Ay X
G(x,x';z,2"') = - 1 (eJ < 4 Roe ik (e T, RaeJ )
Ty ¢ 2575, (1-R.R.)
z IV A U=RgRa
=i lz-2'|
. & di;
23/%,
@ jK X L ~jkyX Jkyx
1 ] (eJ X <+ Rge JKx <)(e JKx >+ Rge xX> )
] w _
ka(l RORa)
~-jk,lz-2"
. e ) Zl Idk
V4 s
(6)

where Vi, = ky, and YX; = k; transformations are used. An evaluation



of the above integral in (6) via the residue theorem yields a
representation for G in terms of a summation of guided modes propagating

along the z direction; namely:

et iky X -jky X -jky X jky x>
G= ) 1 . (eJ Xn <+ Roe ) *n <)(e ! Xn 74 Rae *n"7y
= Y4
n=0 2/k kZn a(RORa)
k2
-jkz |z-2'|
e n . (7)

It is noted that the modes arise from the residues of the poles in the
integrand of (6). The zeros of the denominator of the integrand in (6)
yield the required poles. Also these zeros yield the eigenvalues of the
modes. These eigenvalues are obtained by solving the zeros of the the
integrand in (6) via a numerical ‘Newton-Raphson' iteration method
which is described in Appendix A.

An altenative ray series representation for G is obtained by
expanding the resonant denominator of the integral in (6) into a

partial power series,

1 I~

_— 2 n

1-R R (RoRa) . (8)
oa .5
Then,
Ky x ~jKyX =jkyX j K y X
j . - JKyX¢ Roe JKx <)(e JKx >y RaeJ X >)
G=-7r | ) k
-00 n=0 X

-jkz|z-z'| n



It is convenient for subsequent evaluation of (9) to introduce further

transformations
ky =k cos a
(10)
kz = k S'iﬂ a [ ]

The Green's function G(x,x';z,z') of (9) is now expressed in the complex

a plane as
J ®  Jjkcosasx -jkcosasx -jkcosaex jkcosacx
G = -77 f X (e <+Roe J <)(e J >+ Rqe >
Ch n=0
-jksinas|z-z"'}| n
e *(RoR3) da . (11)

After interchanging the orders of summation and integration, each of the

integrals in the sum is evaluated asymptotically for large

k/{x-x")2+{z-2")% term by term via the method of steepest descent to
arrive at the ray series. The integration path and a saddle point in
the above equation are shown in Figure 4,

It is noted that the ray series could also be constructed directly
from geometrical optics considerations. To assess the accuracy of the
ray field representation which was mentioned above, the magnitude of the
ray series approximation to the Green's function in (11) has been
examined by comparing this with the magnitude of the exact guided mode

series in (7) which is used as a reference solution. The magnitude of
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Figure 4. Integration path in complex a plane.
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the Green's function in terms of the exact modal solution is plotted

against the normalized distance KZ as a solid line in each of the

figures, while that of the ray solution is plotted as a dashed line,

For the sake of convenience, the various parameters which appear in

these figures are defined below.
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KA

normalized waveguide height

KX

normalized x-coordinate of source point

KX - normalized x-coordinate of observation point

KZ - normalized z-coordinate of observation point

PM - no. of propagating modes inside the waveguide
EM - no. of evanescent modes included in a figure

N - terms which have been included in the summation of the
ray series of (11)

Ro - resistance of lower waveguide wall
Xo - reactance of lower waveguide wall
Ra - resistance of upper waveguide wall

Xa - reactance of upper waveguide wall

~
1

wave number in the medium given by K = 2n/X

>
1

wavelength

For KA = 50,0, there are 16 propagating modes for an electric line
source and the modal solution is plotted as a solid line in Figure 5 for
the range 1.0 < KZ < 41.0 which is examined here. The source and
observation points are both equidistant from the waveguide walls in this
case. The corresponding ray field is shown as a dashed line for the
same range. Only N = 3 is used in the ray solution in contrast with 16
modes in the modal summation. As seen from the figure, there is a good
agreement between modal and ray solutions for the range KZ > 15.0., The
discrepancy for KZ < 15.0 1is due to the fact that the first three
evanescent modes are close to cutoff and the observation point is near
the source point. When this evanescent field contribution is included
in the modal solution, it is then found to agree with the ray

13
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Figure 5 |G| for an electric line source excited infinite parallel
plate waveguide as a function of normalized distance KZ.
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solution very well except in the region where the observation point is
very near the source point (KZ < 3.0) as shown in Figure 6. Hence, the
first three evanescent modes are included in the modal solution shown in
all the other figures. 1In Figures 7-9, the ray solutions are compared
again with the modal solutions for different impedance values of the
waveguide walls, As shown in the figures, the ray solutions show very
good agreement with the corresponding modal solutions. The magnitude of
G is again plotted for a magnetic line source in Figures 10-13., From
the Figures 6-13, it may be concluded that the ray solution converges
faster than the modal solution. This convergence of the two solutions
is examined in detail later in this section.

Another interesting phenomenon which can take place in the case of
a waveguide with impedance walls is that pertaining to the excitation of
surface wave type fields. In the modal expression for the configuration
in Figure 2, there are two surface wave type modes in addition to the
usual waveguide type modes which are excited if the impedance is
inductively (or capacitively) reactive when the excitation is due to a
magnetic (or electric) line source within the waveguide. These surface
wave modes are distinct from the other waveguide modes because, in
contrast to the other modes, these modes disappear when the walls become
perfectly-conducting (as the impedance tends to zero); secondly, these
particular modes exhibit the behaviour of the usual bound surface wave
fields that can exist on a single impedance surface excited by a line
source if the wall spacing is made sufficiently large.

An important characteristic of these surface wave type fields is
that the energy associated with these fields is guided very close to

15
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Figure 6 |G| for an electric line source excited infinite parallel
plate waveguide as a function of normalized distance KZ.
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Figure 7 |G| for an electric line source excited infinite parallel
plate waveguide as a function of normalized distance KZ.
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Figure 13 |G| for a magnetic line source excited infinite parallel
plate waveguide as a function of normalized distance KZ.
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the impedance surface. It is noted that in the case of an inductively
reactive impedance boundary one can excite a surface wave on this
boundary only if the line source is magnetic., Likewise an electric line
source excites a surface wave on an impedance boundary only if the
impedance is capacitively reactive. Figure 14 shows the fields inside
the waveguide of Figure 2 when the source and observation points are
both located close to one of the impedance walls of the waveguide, and
the impedance is chosen to be inductively reactive for a magnetic line
source excitation so that surface wave modes can exist, The surface
wave modes are included in the results obtained via the modal expansion
solution in this figure; likewise, the corresponding effect of the
surface wave ray fields is also included in the ray solution in this
figure. Despite the inclusion of the surface wave effects, the
agreement between the exact modal and the approximate ray solution is
not so good in Figure 14, unless the distance from the source to the
observer is sufficiently large. It was found that the reason for this
discrepancy between the two solutions could be traced to the need for an
increased accuracy in the asymptotic approximation of the ray solution
near the surface when the observation point lies within the surface wave
"transition region". This transition region extends over a certain
distance from the source depending on the value of the impedance; e.qg.,
it becomes larger for the magnetic line source excitation of an
inductively reactive impedance boundary as the inductive reactance
becomes smaller. This transition region may be viewed as a launching or

peel out distance required to establish the surface wave. A uniform
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asymptotic treatment of the integral representation of the waveguide
Green's function which yields the ray series provides a simple
transition function correction to the surface ray solution in terms of a
Fresnel integral. The ordinary ray series solution including the
surface wave (or ray) contribution results from a non-uniform asymptotic
treatment of the integral for the waveguide Green's function; this
ordinary ray solution is accurate only outside the surface Qave
transition region. A comparison of the improved or uniform ray solution
with the exact modal solution shown in Figure 15 now indicates that they
are in excellent agreement. Note that the modal solution in Figure 14
is unchanged as compared to that in Figure 15; only the ray solution has
been improved in Figure 15 by including the uniform surface wave
transition function. It is indeed gratifying to see that the uniform
ray solution predicts the proper surface wave transition effects. Sihce
surface wave effects are dominant only in the vicinity of the surface on
which the source is located, these surface wave effects are thus small
whenever the observation point is located far from the surface near
which the source is placed as shown in Figure 16. A particulary
interesting result is observed when the source and observation points
lie on the same impedance wall of the parallel plate waveguide as in
Figure 17, 1In Figure 17, the ray solution composed of the direct ray
contribution from the source together with the contribution from rays
singly and multiply reflected from the walls interferes strongly with
the surface wave field plus the term containing the surface wave
transition effects, since all of the latter surface wave effects are
particulary significant at and near the surface containing the source.
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The result in Figure 17 indicates that the surface wave launched by
the incident wave at the edges in Figure 1 may reflect strongly from any
discontinuity placed close to the walls of an absorber lined duct; the
reflected surface wave could then radiate outside the inlet geometry in
Figure 1 again via diffraction from the edges at the inlet opening. On
the other hand, the effect of the surface wave field could be controlled
to exhibit a greater attenuation along the direction of propégation with
the inclusion of greater loss in the impedance surface characterizing
the thin absorber lined waveguide (or inlet) walls.

To check the nature of the convergence of the modal and ray
solutions, the magnitude of G is plotted against the number of modes and
rays for a fixed KZ in Figures 18-21 for an electric line source, and
22-25 for a magnetic line source for various impedance values. It is
observed from the figures that moda) solution reaches a stable field
value after summing all the propagating modes for KZ = 20.0. On the
other hand, at most N = 3 terms are needed in the ray series to arrive
at the same result,

As pointed out above, it is observed from Figures 18-25 that the
convergence of the ray solution is faster than the modal solution, and
secondly, the convergence of the modal solution is not significantly
improved by the presence of loss in the walls since all the propagating
modes in this case (plus one evanescent mode near the source region) are
required for convergence. On the other hand, the convergence of the ray
solution is improved much as the impedance value becomes bigger (for the

TEy case) as shown in the figures.
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IIT. ANALYSIS OF AN ELECTROMAGNETIC SCATTERING FROM AN SEMI-INFINITE
PARALLEL PLATE WAVEGUIDE WITH LOSSY WALLS

Returning to the problem in Figure 1, the field at some observation
point inside the semi-infinite duct are due to the direct and reflected
rays which would result from the incident plane wave when it directly
enters the duct, as well as due to the rays diffracted from the edges

which enter the duct after diffracting from the edges as shown in Figure

26.

OBSERVATION

Figure 26, Dominant ray paths for the problem in Figure 1.

The incident field impinging on the edges at the open end produces
diffracted rays which can be calculated via Maliuzhinets' edge
diffraction coefficient [3] that is valid for the problem of plane wave
diffraction by a wedge with two face impedances. Here the Maliuzhinets'

result [3] is specialized to the configuration in Figure 1 corresponding
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to the case of a half plane pertaining to each of the semi-infinite
waveguide walls; In particular, the half plane here is a special case of
a wedge with a zero internal angle and with a non-zero impedance on

one face (corresponding to the inner waveguide wall) and with a zero
impedance on the other face (corresponding to the outer
perfectly-conducting waveguide wall) of the half plane. An alternative,
more approximate but simpler method [4] for computing the diffracted
rays by the edges at open end is to modify the diffraction coefficient
which is based on the Uniform geometrical Theory of Diffraction (UTD)
solution for a perfectly-conducting half plane [5,6]. In this report,
the modified diffraction coefficent [4] is used for its simplicity. In
the very near future, that diffraction coefficient will be replaced by
the diffraction coefficient available from Maliuzhinets' work. The

simpler solution in [4] is discussed below for completeness.

BASIC 2-D EDGE DIFFRACTION SOLUTION

Consider a plane wave incident on a half plane whose one side is
perfectly-conducting and the other side is an impedance surface as shown
in Figure 27. The total UTD ray field UtO! at an observation point (P)
for this problem may be expressed as the sum of the fields associated

with the incident, reflected and diffracted rays such that

Note that UtOt represents the total y-directed electric field if an
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electric line source is used, whereas, it represents the total

~

y-directed magnetic field if a magnetic line source is present. The

fields U' and U are associated with the usual geometrical optics (GO)

incident and reflected rays; whereas, the field Ud is associated with

the edge diffracted ray as shown in Figure 27.

According to the regions where the observation point P is located,

the individual terms may be expressed in the following forms

-jks;
Ao & in regions I and II, and Ay is some
751 » known complex constant related to
the strength of the line source.

(13)
0 , Tn Region III .
T~ -jksp , -jks"
U’(QR)R e , in Region I with UT(QR) = Ay ©
r o
(14)
0 , in Regions IT and III
-jksg
. e . -jks'
U‘(QE)'DE 7Sqg ., 3 ul(Qp) = Ay E (15)
/sT
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where sj (or sp) is the distance from the source (or point of reflection
Qr) to the observation point P and sq is the distance from the edge (Qg)
to the observation point. Also i is a reflection coefficient for the
surface which is illuminated and is derived in Appendix B.

For a half plane considered here, the diffraction coefficient DE

TE
for the (TM§) case is given by [4,6]

-j n/4 ~
. -e . [ FlkLa(4=6')] + r FlkLa(¢+¢')]
DE (4:9") = ok { cos (¢-¢")/2 cos(¢+e")/2 } (16)
where
s'sq
L= stas, 3 ale) = 2c0s2(8/2) ; B = ¢%¢'
and
jx = -jtz
F(x) = 2j/xe [ e~ dt .
x

F(x) is called transition function and involves a Fresnel integral. The
magnitude and phase of the transition function is shown in Appendix C.
Note that in (16), if the magnetic (or electric) field vector is
parallel to the edge, the positive (or negative) sign is used.

The diffraction coefficient in (16) is often expressed by

DE (¢:4') = D(¢-4') £ D(¢+¢") (17)
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with

-j n/4
M Fratee)
D(67¢") = 573 Cos(79')/2 (18)

This diffraction coefficient provides a continuity in the total
field across the incident and reflection shadow boundary transition
regions. It is noted from Equations (13) and (14) that the
geometrical optics (GO) field is discontinuous at these shadow
boundaries; thus the diffracted field must properly compensate the
discontinuities in the incident and reflected fields there. In
particular, the D(¢-¢') type term in the DE keeps the total field
bounded at the incident shadow boundary (ISB); likewise, the D(¢+¢')
term does the same thing at the reflection shadow boundary (RSB).

Using the diffraction coefficient developed above, the incident,
reflected, diffracted and total fields are examined for this geometry as
shown in Figure 28. The difference between Figure 27 and 28 is that
the line source is allowed to recede to infinity in Figure 28
giving rise to a plane wave illumination. In the above figure, R is the
distance from the edge of half plane to the field point, and ¢' and ¢
are incident and observation angle, respectively. In addition, Rg and
Xg correspond to the surface resistance and reactance of the impedance
wall, respectively. For an incident TM plane wave of unit strength (and
zero phase at Qg) which is polarized such that Ei = ; Ey, the

corresponding GO (incident and reflected) and diffracted fields are
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plotted against the observation angle Figure 29. The incident and
observation angles are measured from the perfectly-conducting face in
this case. The reflected field is plotted as a dashed line; whereas the
total GO (incident plus reflected) field is shown as a solid line in

the figure with vertical axis marked GO. The oscillation in the GO
field results from an interference between incident and reflected
fields. Note also that the dicontinuities in the GO field a?e
compensated by the corresponding discontinuities in the diffracted field
as shown in the figures with vertical axis marked DIFFRACTED and TOTAL
fields, respectively. The total field is thus continuous for all
observation angles including the ISB (¢ = 210°) and RSB (¢ = 150°)
directions. Similiar plots are shown in Figures 30-33 for different
incident angles. In all the figures (29-33), the total fields are
continuous for all observation angles. Additional calculations are also
shown in Figures 34 -38 for the TEy or perpendicularly polarized plane
wave case with different impedance values on the half plane. The
incident and observation angles are measured from the impedance wall
side in Figures 34-38. Note that the ripples in the total fields are
getting smaller as the loss in the impedance wall becomes higher because
the magnitude of reflected field decreases with higher loss.

The analysis developed above can be employed to treat the
scattering and coupling problems associated with the semi-infinite
parallel plate waveguide illuminated by a plane wave as shown in Figure
1 because the waveguide can be formed by two parallel half planes; one
half plane corresponds to the lower wall, and the other one corresponds
to the upper wall as shown in Figure 39.
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Then according to the location of the field point inside the
waveguide, different combinations of rays such as direct, reflected,
diffracted,and also multiply reflected rays reach the field point as
shown in Figure 40, Of course, the edge diffracted rays also reach the
field point via direct and multiply reflected ray paths. If the spacing
between the walls is sufficiently large in terms of the wavelength, then
the effect of the rays multiply diffracted across the aperture (at the
open end) before they enter the waveguide can be neglected. Such rays
which undergo multiple diffractions across the aperture are ignored in
the present work.

As an illustration, each type of ray field is plotted against the
axial distance from open end to the field point in Figures 41-43 for a
plane wave with TMy or parallel polarization, and in Figures 44-46 for a
TEy or perpendicularly polarized plane wave for various incident angles,
respectively. Note that the observation point in all these plots is
located off the walls; hence, the surface wave effects are not expected
to be strong in this case. As shown in these plots, the total fields
are continuous for all the boundaries designated in Figure 40. Similar
plots are shown for different impedance values in Figures 47-49 for a
TMy incident plane wave, and in Figures 50-52 for a TEy incident plane
wave.

Using the same diffraction coefficient as in (16) the far zone,
fields backscattered from the inlet are computed and shown in Figures 53
and 54 as a function of incident angle for parallel and perpendicular

polarization cases, respectively. R4 represents the far zone distance
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FIELD POINT

Figure 28. A half plane geometry with perfectly-conducting on one side
and impedance surface on the other side.
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Figure 39. Semi-infinite parallel plate waveguide geometry showing
the incident plane wave and the angle of incident.
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from open end of the waveguide to the field point. Note that the
backscattered field is entirely due to edge diffracted rays for the
semi-infinite waveguide without any interior termination. These plots
are repeated in Figures 55 and 56 as a function of the waveguide width

for different wave polarizations.
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Figure 40 Semi-infinite parallel plate wave guide showing different

combinations of geometrical optical, direct, singly and
multiply reflected rays in each region of the waveguide.
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Figure 41

Incident, reflected, diffracted and total fields as a
function of the axial distance form open end to the field
point for the plane wave with a parallel polarization (TMy)
case,
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Figure 42 Incident, reflected, diffracted and total fields as a
function of the axial distance form open end to the field
point for the plane wave with a parallel polarization (TMy)
case,
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Figure 43 Incident, reflected, diffracted and total fields as a
function of the axial distance form open end to the field
point for the plane wave with a parallel polarization (TMy)

case.
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Figure 44 Incident, reflected, diffracted and total fields as a
function of the axial distance from open end to the field
point for the plane wave with a perpendicular polarization
(TEy) case.

64



2.0

INCIDENT
1.0

2.00.0

DO

B et

2.00.0

DIFFRACT
1.0

__________ 5“_””_?“ : | § § : | ~--Z- REFLECTED FIELD
l__ L L L L s s s e s s e i
?

o
)
o
o~ ;
- :
T o :
- ¢
(ol
= é
o
o T I T I ' ] ' T ' I !
0.0 2.0 4.0 6.0 8.0 10.0 12
Z (LAMBDA)
A =5.0 (LAMBDA) RS =0.5
X =5.0 (LAMBDA) XS =0.5

45.0 (DEGREE)

ﬂ\
(]

Figure 45 Incident, reflected, diffracted and total fields as a

function of the axial distance from open end to the field
point for the plane wave with a perpendicular polarization

(TEy) case,
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(TEy) case.
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Figure 47 Incident, reflected, diffracted and total fields as a
function of the axial distance from open end to the field
point for the plane wave with a parallel polarization
(TMy) case,
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Figure 48 Incident, reflected, diffracted and total fields as a
function of the axial distance from open end to the field
point for the plane wave with a parallel polarization

(TMy) case.
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Figure 50 Incident, reflected, diffracted and total fields as a
function of the axial distance from open end to the field
point for the plane wave with a perpendicular polarization
(TEy) case,
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Figure 51 Incident, reflected, diffracted and total fields as a
function of the axial distance from open end to the field
point for the plane wave with a perpendicular polarization
(TEy) case.
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Figure 53 Backscattered field as a function of incident angle for a
parallel polarization case.
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Figure 54 Backscattered field as a function of incident angle for
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Figure 55 Backscattered field as a function of waveguide width for a
parallel polarization case.
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IV. SUMMARY AND DISCUSSION

Electromagnetic (EM) plane wave scattering by an open ended,
perfectly-conducting, semi-infinite parallel plate waveguide with a
thin, uniform layer of lossy material on its inner wall which is
approximated by a surface impedance boundary condition is analyzed by
the ray method. The ray method provides an approximate but sufficiently
accurate analysis for this problem as long as the waveguide is large (in
terms of the wavelength) to propagate the fields within. The numerical
results from the ray method are compared with those obtained from the
formally exact conventional modal solution for only the interior
waveguide problem (involving an infinitely long waveguide) in order to
check the accuracy of the interior ray solution. It is found that there
is very good agreement between the two solutions.

Some of the advantages of the purely ray approach over the modal
approach are that it does afford some physical insight into the
scattering mechanisms particularly in connection with the coupling of
the fields from the exterior to the interior regions in the case of the
semi-infinite waveguide configuration, as well as into the effect of the
wall impedance on the fields in the interior waveqguide region. Also,
the ray solution does not require one to evaluate the eigenvalues which
are essential for the construction of the modal solution; these modal

eigenvalues must be found numerically for different impedance values,
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and for each mode, making the modal approach more inefficient as
compared to the ray approach. Furthermore, it was found that, in
general, the ray solution converged faster than the modal solution for
the case of interest, namely, when the wall surface impedance contained
loss. Furthermore, it was also found in this work that, in general, the
rate of convergence of the modal solution did not improve significantly
even with the presence of loss in the wall surface impedance.

The ray solution which has been developed for the 2-D semi-infinite
parallel plate waveguide configuration of Figure 1 will be extended next
to analyze the 3-D problem of EM plane wave scattering by a hollow,
open-ended semi-infinite perfectly-conducting circular duct with a thin
absorber coating on the inner wall. During the initial phase of this
study, the absorber coating on the conducting circular waveguide walls
will be approximated by a uniform surface impedance boundary condition.
Subsequently, the impedance boundary condition will be relaxed in both
the 2-D and 3-D cases to accommodate a moderately thin absorber coating.
such as a lossy dielectric or ferrite coating of finite thickness (in
which the thickness is electrically small). The effect on the interior
waveguide fields due to variations in the electrical parameters and the
thickness of the dielectric/ferrite wall coating would be of special

interest in this study.
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APPENDIX A
A METHOD OF THE NUMERICAL SOLUTION OF MODAL EIGENVALUES

The transcendental equation for solving the modal eigenvalues is
obtained by setting the denominator of the integrand in Equation (6)
equal to zero. Let this equation be written symbolically as F(ky,) = O.
This transcendental equation can be reexpressed in terms of any of its
roots denoted by ky as:

-j2kya

F(ky) = (kxtk8g)(ky+ksz)e - (ky=k8g)(kx-ks3) . (A.1)
A popular method of finding the roots of a transcendental equation is
the 'Newton-Raphson' method. The basic theory behind this method is
that the function F(x) is expanded in a Taylor series about some point

Xo which gives
F(x) = F(xg) + (x=x0)F'(xo)+ 1/2 (x=xg)2 F"(xq) + «.. (A.2)

With the assumption that x is the root and xo is a good initial guess of

the root, the series can be written approximately as
F(x) = F(xo) + (x-xo)F'(xg) (A.3)

since (x-xy ) is small due to x being approximately equal to xo by a

good initial guess.

Then the above equation can be rewritten as

F(Xo)

X = X5 = Flxg) (A.4)
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which gives the iterative equation

F(xn)
*n41 © *n T F'(x.) s (A.5)

where xp and xp+] are the values of x after the nth and (n+1)th
iteration, respectively.

As seen from the above approximation, it is necessary to have a
good initial guess when using the ‘Newton-Raphson' method. This will
allow rapid convergence to the proper root. The eigenvalues of the
waveguide with perfectly-conducting inner walls are used as the initial
guess in the modal analysis of the waveguide with impedance walls. The
computer program stops iterating when the percent change in the

magnitude of the root between successive iterations is less than 10-4,
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APPENDIX B
REFLECTION COEFFICIENT FOR AN IMPEDANCE BOUNDARY

Consider a plane wave obliquely incident on a surface impedance
boundary, as shown in Figure B.1, The incident and reflected waves make
angles of 8; and 6p with x axis, respectively, and Zg is a normalized
surface impedance. The field vectors shown in the figure are those

corresponding to the TEy case and thus H has only a y component.

Figure B.1 A plane wave (TEy) obliquely incident on a surface impedance
boundary.
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The incident and reflected magnetic fields H1 and W™ in this TE,

are represented by

- -~ ~ =jkzsin®; jkxcos®j

H1 = yH1 =ye e (B‘l)
and

- - -~ o~ -ijSiner -jkxcoser

HF = yHT =y Re e . (B.2)

The total magnetic field Hy satisfies the following equation ont he
impedgance boundary

aHy

X - ijsHy =0 at x =0 . (B.3)

Therefore, incorporating (B.1l) and (B.2) into (B.3) gives

-jkzsing; ~ -jkzsinép
(jkcos85-jkZg)e R{jkcos®p+jkZg)e =0. (B.4)
From (B.4) one obtains the law of reflection (85 = 6p) so that the
fields can be phase matched at the boundary in order to satisfy (B.3].

As a result, (B.4) reduces to:

R(Zg+cos®i) + (Zg-cos8j) =0 .

Hence the reflection coefficient for TEy case is given by

- cos6j-Lg
Ryp = Cos®;+Zg . (B.5)

Likewise, the reflection coefficient for TMy case is given by

-1
- cos 05 Zg

Reymy =" -1 . (B.6)
™ cosei+ZS 1
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APPENDIX C
THE MAGNITUDE AND PHASE OF TRNSITION FUNCTION
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Figure C.1 The magnitude and phase of transition function.
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